COSCHKR ontology – the basis for a platform recommending 3D and spectral digitisation strategies

Stefanie Wefers, Ashish Karmacharya, Frank Boochs
i3mainz - Institute for Spatial Information and Surveying Technology, Mainz
Motivation

- Digital documentation of CH objects is an interdisciplinary task of CH-, spatial/spectral recording-, IT-, and visualisation experts.
- Which digitisation strategy is best suitable depends on the
 - CH application (= data usage)
 - CH object parameters (e.g., appearance, size)
 - Digitisation device and method (e.g., measurement principles)
 - Data processing (e.g., registration)
- content & quality of digital representations vary

Roman vessel
(385-400 AD),
8.3 m long
Dependency in between of characteristics: resolution and accuracy

Context: documentation of a Roman ship wreck

Terrestrial Laser Scanning vs. Images (Structure from Motion)

Resolution: lower - higher
Dependency in between of characteristics: resolution and accuracy

Context: documentation of a Roman ship wreck

<table>
<thead>
<tr>
<th>Terrestrial Laser Scanning</th>
<th>vs.</th>
<th>Images (Structure from Motion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global accuracy:</td>
<td>higher</td>
<td>lower</td>
</tr>
</tbody>
</table>

Asking only for high-quality data is not enough! Which recording strategy is suitable depends on the CH object, CH application, the capabilities of the recording device, and the data processing.
Motivation

• Bridge the gap between the various experts involved in the digitisation of CH objects through a platform under development which will give recommendations for recording strategies based on the information about the CH object and the intended data usage.

• COST Action TD1201: Colour and Space in Cultural Heritage (COSCH) provided the opportunity. It is a multidisciplinary European network of humanists, conservators, and engineers.
Idea

COSCH develops a web based system so-called COSCH Knowledge Representation Application (COSCHKR App)

- A user of this web based system would need to provide information about a CH object s/he would like to record, related external influences, and the intended application of the digital data.

- Based on the user’s input the platform will give recommendations which recording strategy is best suited to fulfil all input requirements.
Idea

• CH experts will benefit from this web based system as they will receive objective recommendations which s/he could use asking technical experts for specific offers.

• Technical experts will benefit from this web based system as they will receive more specific requests from CH experts. Furthermore, they could check their own approaches.
What is COSCH^{KR}?

What is needed to create such a web based system?

- We have to develop an ontology knowledge model (so-called COSCH^{Knowledge Representation}).
- This ontology structures all necessary knowledge about all decisive factors in the decision making how a physical thing (= CH object) has to be recorded to best fulfil the conditions of the targeted application.
- The web based system will use this ontology knowledge model.

The ontology is expressed in Web Ontology Language (OWL).
Strategy

- What do we need to do to create the COSCHKR ontology?
 - We have to determine the scientific disciplines involved in spatial and spectral recording of CH objects: spectral recording experts, spatial recording experts, CH experts, IT experts.
 - We have to \textbf{structure the knowledge} (define a theoretical superstructure from experiences and empirical data)
 - Starting with the domain specific knowledge and then
 - relate the structured knowledge to each other
Strategy

• Background and basis is the fact that a deterministic relation exists between
 – the requirements of a CH application on spatial, spectral, and visual digital information of a CH object which itself has concrete physical characteristics, and
 – the technical possibilities of the spectral and spatial recording devices.

• We are developing a domain ontology.
 – It is a schematic model that will be used to infer recommendations at the schema level.
 – It will express a theoretical concept about the decision making of a technical expert choosing the best suitable spatial or spectral recording strategy.
What do we need to do to create the COSCHKR ontology?

- Imagine the ontology being a tree
 - with a trunk
 - and many deliquescenting branches.
 - From branch point to branch point the description of a topic is getting more and more detailed.

- We have to create such a tree \(\rightarrow\) each branch at a time
• How to structure the knowledge?

1) Most important to create a consistent hierarchical structure are discussions:

 1) These discussions focus on specific CH Applications making it more easy for all partners:

 1) Spatial Case Study
 2) Spectral Case Study

2) It was decided to create five main branches: Physical Thing, CH Applications, External Influences, Technologies, Data.

3) E.g. the branch Technologies was split into:
Strategy

Most important are the rules and dependencies which link the five top-level classes and sub-classes.
Strategy

Most important are the rules and dependencies which link the five top-level classes and sub-classes.
Simulation of a GUI

- Spatial Case Study: Deformation analysis
 - Creation of 3D-models of waterlogged wood to determine and visualise the spatial differences before and after conservation treatment.
CH Object Condition
- Fragile, Moderately Rigid, Highly Rigid

CH Object Shape
- Cubic, Rectangular, Oval, Circular, Square

CH Object Size
- Small, Moderate, Big

CH Object Quantity
- Small, Moderate, Large

CH Object Reflectivity
- Low, Moderate, High

Texture
- Textured, Non-Textured

3D Shape

CH Application
- Deformation analysis
- Visualisation
-

Required Data
- 1D, 2D, 2.5D, 3D

Required Quality
- Low, Medium, High

has CH Application Demand of
CH Object Condition
- Fragile, Moderately Rigid, Highly Rigid

CH Object Shape
- Cubic, Rectangular, Oval, Circular, Square

CH Object Size
- Small, Moderate, Big

CH Object Quantity
- Small, Moderate, Large

CH Object Reflectivity
- Low, Moderate, High

Texture
- Textured, Non-Textured

3D Shape

Required Data
- 1D, 2D, 2.5D, 3D

Required Quality
- Low, Medium, High

CH Application
- Deformation analysis, Visualisation

Technologies
- Technical Process
- Laser scanning, Struct. Light Scanning, Struct. from Motion

CONFLICT
- Generates Low Accuracy

has CH Characteristics of
has CH Application of
has CH Application Demand of

is a
is Suitable for Objects with
represents the shape of the CH object
CH Object Condition
- Fragile, Moderately Rigid, Highly Rigid

CH Object Shape
- Cubic, Rectangular, Oval, Circular, Square

CH Object Size
- Small, Moderate, Big

CH Object Quantity
- Small, Moderate, Large

CH Object Reflectivity
- Low, Moderate, High

Texture
- Textured, Non-Textured

CH Object

Required Data
- 1D, 2D, 2.5D, 3D

Required Quality
- Low, Medium, High

Technologies
- Technical Process
- Laser scanning
- Struct. Light Scanning
- Struct. from Motion
CH Object Condition
- Fragile, Moderately Rigid, Highly Rigid

CH Object Shape
- Cubic, Rectangular, Oval, Circular, Square

CH Object Size
- Small, Moderate, Big

CH Object Quantity
- Small, Moderate, Large

CH Object Reflectivity
- Low, Moderate, High

Texture
- Textured, Non-Textured

3D Shape

Required Data
- 1D, 2D, 2.5D, 3D

Required Quality
- Low, Medium, High

Technologies
- Technical Process
- Laser scanning
- Struct. Light Scanning
- Struct. from Motion

Deformation analysis
Visualisation

CH Application

Deformation analysis
Visualisation

CH Application Demand of

has CH Characteristics of
CH Object

- **CH Object Condition**
 - **Fragile**, Moderately Rigid, Highly Rigid

- **CH Object Shape**
 - **Cubic**, Rectangular, Oval, Circular, Square

- **CH Object Size**
 - **Small**, Moderate, Big

- **CH Object Quantity**
 - Small, Moderate, **Large**

- **CH Object Reflectivity**
 - **Low**, Moderate, High

- **Texture**
 - Textured, **Non-Textured**

- **Budget**
 - Not Relevant

- **Technical Competence Needed**
 - **Low**, Medium, High

- **CH Object Application**
 - Deformation analysis
 - Visualisation

- **Markers**
 - Internal, **External**, Natural

- **3D Shape**

- **Workflow Method**
 - Automated, Semi-Automated, Manual

- **Technologies**
 - Technical Process
 - Laser scanning
 - Struct. Light Scanning
 - Struct. from Motion

- **Required Data**
 - 1D, 2D, 2.5D, **3D**

- **Required Quality**
 - Low, Medium, **High**

External Influence (Project)

- **External Influence**

CH Object Characteristics of

- **Required Data**
 - 1D, 2D, 2.5D, **3D**

- **Required Quality**
 - Low, Medium, **High**

- **Markers**
 - Internal, **External**, Natural

- **3D Shape**

- **Workflow Method**
 - Automated, Semi-Automated, Manual

- **Technologies**
 - Technical Process
 - Laser scanning
 - Struct. Light Scanning
 - Struct. from Motion

- **Deformation analysis**

- **Visualisation**

- **Markers**
 - Internal, **External**, Natural

- **3D Shape**

- **Workflow Method**
 - Automated, Semi-Automated, Manual

- **Technologies**
 - Technical Process
 - Laser scanning
 - Struct. Light Scanning
 - Struct. from Motion

- **Deformation analysis**

- **Visualisation**

- **Markers**
 - Internal, **External**, Natural

- **3D Shape**

- **Workflow Method**
 - Automated, Semi-Automated, Manual

- **Technologies**
 - Technical Process
 - Laser scanning
 - Struct. Light Scanning
 - Struct. from Motion

- **Deformation analysis**

- **Visualisation**

- **Markers**
 - Internal, **External**, Natural

- **3D Shape**

- **Workflow Method**
 - Automated, Semi-Automated, Manual

- **Technologies**
 - Technical Process
 - Laser scanning
 - Struct. Light Scanning
 - Struct. from Motion

- **Deformation analysis**

- **Visualisation**

- **Markers**
 - Internal, **External**, Natural

- **3D Shape**

- **Workflow Method**
 - Automated, Semi-Automated, Manual

- **Technologies**
 - Technical Process
 - Laser scanning
 - Struct. Light Scanning
 - Struct. from Motion

- **Deformation analysis**

- **Visualisation**

- **Markers**
 - Internal, **External**, Natural

- **3D Shape**

- **Workflow Method**
 - Automated, Semi-Automated, Manual

- **Technologies**
 - Technical Process
 - Laser scanning
 - Struct. Light Scanning
 - Struct. from Motion

- **Deformation analysis**

- **Visualisation**

- **Markers**
 - Internal, **External**, Natural

- **3D Shape**

- **Workflow Method**
 - Automated, Semi-Automated, Manual

- **Technologies**
 - Technical Process
 - Laser scanning
 - Struct. Light Scanning
 - Struct. from Motion
CH Object

- Condition: Fragile, Moderately Rigid, Highly Rigid

- Shape: Cubic, Rectangular, Oval, Circular, Square

- Size: Small, Moderate, Big

- Quantity: Small, Moderate, Large

- Reflectivity: Low, Moderate, High

- Texture: Textured, Non-Textured

Budget

- Not Relevant

Technical Competence Needed

- Low, Medium, High

CH Application

- Deformation analysis
- Visualisation

Markers

- Internal, External, Natural

External Influence (Project)

- Budget Relevant

Workflow Method

- Automated, Semi-Automated, Manual

Technologies

- Technical Process
 - Laser scanning
 - Struct. Light Scanning
 - Struct. from Motion

Required Data

- 1D, 2D, 2.5D, 3D

Required Quality

- Low, Medium, High

Markers can fix Internal Markers?

Respond: YES

Represented by the shape of the CH object

CH Characteristics of

has Generation of

has CH Application Demand of
CH Object Condition
- Fragile, Moderately Rigid, Highly Rigid

CH Object Shape
- Cubic, Rectangular, Oval, Circular, Square

CH Object Size
- Small, Moderate, Big

CH Object Quantity
- Small, Moderate, Large

CH Object Reflectivity
- Low, Moderate, High

Texture
- Textured, Non-Textured

Markers
- Internal, External, Natural

Technologies
- Technical Process
- Laser scanning
- Struct. Light Scanning
- Struct. from Motion

External Influence (Project)

Budget
- Not Relevant

Technical Competence
- Low, Medium, High

Required Data
- 1D, 2D, 2.5D, 3D

Required Quality
- Low, Medium, High

Required Generation
- Markers

Members

Deformation analysis

Visualisation

...
Status quo and future perspective

- CH Applications „deformation analysis“ (spatial) and „revelation of underdrawing“ (spectral) operable through the created ontology
 - more than 750 classes
 - Laser Scanning is partially included as an alternative approach
- Another spectral CH Application will be designed (Tatiana PhD topic)
- Further CH Applications will be implemented (even after COSCH)
- Ontology will be published in the near future through a front end using a **Prolog Inference Mechanism**
Prolog Inference Mechanism

- Under development in collaboration with MISANU colleagues from Belgrade
- COSCH\(^{KR}\) ontology is parsed to infer and discover knowledge for optimal recommendations
- A web service will be developed with an interactive interface (front-end) and COSCH\(^{KR}\) + inference mechanism (back-end)
Challenges

• Common understanding:
 – interdisciplinary understanding
 – remote discussions versus face-to-face discussions

• Discipline habits/methods have to be broken down into logically linked pieces

• Every single piece has to be named, structured, and linked
 – Example: text > chapter > paragraph > phrase > word > letter
In a long-term perspective, the entire CH community will benefit from COSCHKR platform as digitisation projects, which rely on COSCHKR recommendations, will be more sustainable and durable.
Thank you for your attention!

Publications:

in preparation:

• A. Karmacharya, St. Wefers, Structuring spectral and spatial recording strategies of cultural heritage assets - Background, state of affairs, and future perspectives. COSCH final book.

planned:

• Semantic reasoning
• Spectral case study
Inference system through Prolog

- Ontologies
 - optimal tool for knowledge representation
 - represents **WHAT** on a subject and not **HOW**
- Example:
 - **Structured Light Scanning** is defined through Structured Light Scanner, data it generates, a setup and a data processing – this is **WHAT**
 - BUT there are OTHER number of ways Structured Light Scanning works and they are **HOWs**. These **HOWs** are encrypted in COSCH^{KR} within single classes through rules.
 - Prolog is versed in managing these situation based **HOWs**.